DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

PEM CO₂ Electrolyzer Scaleup to Enable MW-scale Electrochemical Modules

Dr. Sadia Kabir*, Dr. Theodore Gao, Dr. Kathryn Corp, Dr. Sichao Ma, Dr. Kendra Kuhl (PI)

---twelve

carbon transformation for a climate positive world

April 7, 2023 | Carbon Dioxide Utilization

Twelve: Utilizing Biogenic CO₂

Twelve: Overview

Developing and scaling a platform for a reactor that electrochemically transforms biogenic CO₂ to chemicals and fuels

Proprietary reactor design

Electricity

OUTPUTS: PRODUCTS THAT DROP
INTO EXISTING SUPPLY CHAINS

CO (chemicals \$80 billion; jet fuel: •\$130 billion, 2025)

- Biogas (\$25 billion TAM, 2025)
 - Oxygen

World first CO₂ derived polycarbonate

Roadmap: Biogenic CO₂ Conversion to Products at Scale

Approach

- Technical approach
- Go/no-go milestones
- Project management and risk analysis

Technical Approach: Twelve's core innovation is a membrane electrode assembly (MEA) that enables CO₂ electrolysis

Technical Approach: Twelve's core innovation is a membrane electrode assembly (MEA) that enables CO₂ electrolysis

Energy Efficiency = Faradaic Yield x Voltage Efficiency

THE METRICS THAT
MATTER FOR COSTEFFECTIVE CO₂
ELECTROLYSIS

3. CURRENT DENSITY

The amount of current per electrode area needed to convert CO₂ to CO and other hydrocarbons.

1. FARADAIC YIELD

The percent of the electrical current through the system that goes to producing the desired product.

4. LIFETIME

How long the electrochemical reactor runs without a loss in energy efficiency or current density.

2. VOLTAGE EFFICIENCY

The thermodynamic minimum voltage divided by the actual voltage.

5. CO₂ UTILIZATION

How much of the input CO_2 to the reactor is converted to product in a single pass.

Improving technical performance metrics that dictate system OpEx and CapEx

Relevance: The BETO grant represents the turning point toward mass production of PEM CO₂ electrolyzer stacks

Budget Phases and Go/No-Go Milestones:

End of Project Goal:

- >750 cm²
- >1000 hours
- 100% of target current density, Faradaic efficiency, and CO₂ utilization

National Laboratory and Academic Collaboration:

Project participants and expertise

Operando diagnostics

Ling Tao

LCA and process modeling

Xiong Peng

X-ray characterization

Aimy Bazylak

Anode porous transport layer modeling

Jasna Jankovic

TEM and EDS

Project Management; Risks and Mitigation

- Bimonthly internal meetings
- Monthly/bimonthly external meetings

Dedicated project monitor:

Dr. Kathryn Corp Technical Program Manager

Risk	Mitigation	
Instrument/time availability	Twelve engineers visited our collaborators to expedite method development and optimize worker time	
Supply chain constraints	To address long lead times for certain equipment, Twelve is socializing with vendors and collecting bids from multiple vendors	
Interruptions during long-term electrolyzer testing	Twelve has installed uninterruptible power supplies on its electrolyzer test stations and also implemented automated shut off procedures for abnormal temperatures, flow rates, and voltages	

Progress and Outcomes

BETO Project Progress:

—twelve

Scaling to industrially relevant MEA sizes

1. Scale MEA active area to >750 cm² (2022-2023)

4 x 100 cm² MEAs

8 x 750 cm² MEAs

MEA active area scaleup

Fabrication system scaleup

Establishing Structure-Property Correlations:

-twelve

Catalyst layer roughness and porosity

Optimizing morphology by tuning fabrication parameters

Fabrication parameters:

- Temperature
- Nozzle type
- Nozzle frequency
- Flow rate
- Distance of nozzle to substrate
- Speed
- Solvents
- Solids wt.%

Tuning MEA Fabrication Parameters:

-twelve

Optimizing catalyst layer morphology

BETO Project Progress:

-twelve

Developing scalable stack hardware

2. Design and build single-cell stacks (2023)

- Cell hardware is attached to a test stand to control the flow of CO₂ and water through the cell, deliver electrical current and measure voltage, and measure product CO
- We will be using this same >750 cm² flow field design, cell hardware, and stack procedures for developing our multi-cell stacks

X-ray Computed Tomography (XCT):

Analyzing porosity of gas diffusion layers (GDLs)

- Method validation: calculation from air and solid yields similar results (± 1%)
- Results: porosity ranges from 50-70% depending on vendor
- In progress: analysis of catalyst layer XCT images

Pore Network Modeling and Operando Imaging: Predicting multiphase flow behavior

Technoeconomic Analysis:

twelve

Comparing developmental pathways to identify cost drivers

- TEA analysis to compare developmental pathways and identifying key cost drivers
- Current results point to stack optimization, stack performance, and lifetime as R&D priorities

BETO Project Goal:

-twelve

Demonstrating performance at scale

3. Demonstrate single-cell performance at >750 cm² scale (2024)

Impact

- Impact on field/industryOfftake agreementsCommercialization potential

Partnerships and Offtake Agreements:

Transforming CO₂ into CO2Made® products for flagship customers

world's first CO2Made® ingredients for Tide world's first CO2Made® auto parts world's first CO2Made® sunglass lenses

Microsoft and Alaska Airlines are working with this startup to make clean jet fuel from carbon emissions

Summary – PEM CO₂ Electrolyzer Scaleup to Enable MW-scale Electrochemical Modules

- Scaled up to industrially-relevant MEA active area
- Designed scalable stack hardware; building deeper understanding of our system
- Built and tested single-cell stacks
- Ongoing work:
 - Iterate on cell design and MEA fabrication to optimize electrolyzer performance and lifetime
 - Utilize advanced characterization to identify performance drivers

Acknowledgements

U.S. DEPARTMENT OF **ENERGY**

Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

Ian Rowe, Ryan Lawrence

KC Neyerlin, Ling Tao

Xiong Peng

Jasna Jankovic

twelve

Sadia Kabir

Sichao Ma

Katie Corp

Simon Stone

Tim Bekkedahl

Jason Cooper

Danny Hellebusch

Theodore Gao

Kendra Kuhl

Supporting Slides

- Quad Chart
- DEI
- Highlights from initial verification
- Awards
- Commercialization activities

Quad Chart

Timeline

• Start: 10/01/2020

End: 06/30/2024

	FY22 Costed	Total Award
DOE Funding	\$243,777 (10/01/2021 – 9/30/2022)	\$746,516 (negotiated total federal share)
Project Cost Share *	\$111,823	\$326,950

Project Goal

The goal of this project is to develop, fabricate, and demonstrate high-performing, large-area, single-cell CO₂ electrolyzers, and establish new experimental and computational methods to accelerate future development.

End of Project Milestone

Demonstrate >750 cm² MEAs with >1000 hours of lifetime at industrially-relevant operating conditions, using biogenic CO_2 as a feedstock.

Funding Mechanism

DE-FOA-0002203

Topic area 7, Scalable CO₂ Electrocatalysis 2020

TRL at Project Start: 4

TRL at Project End: 5

Project Partners

Academic: UToronto, UConn

National Lab: LBL, NREL

Diversity, Equity, and Inclusion at Twelve

Aim: reduce barriers for talented people to contribute to the mission

- 64% womxn and 45% minority leadership team
- Focused on fostering a culture of belonging
- Collaboration and transparency are core values
- Company-wide,
 diversity-focused
 education programs
 (implicit bias training,
 allyship training, etc)
- Targeted hiring outreach to underrepresented demographics

- Increase
 underrepresented
 candidate talent pool
 for first interviews by
 25% during 2023
- Provide inclusive leadership training to 100% of managers by Q4 2023

Our Company

Our Practices

Our Goals

Awards

- 1. Fast Company 3rd on "Most Innovative Companies 2022" https://www.fastcompany.com./90721844/twelve-transforming-carbon-pollution-jet-fuel-plastics
- 2. TIME Best Inventions of 2022 https://time.com/collection/best-inventions-2022/6226975/twelve-co2-transformation-device/
- 3. The New York Times 2022 Good Tech Award https://www.nytimes.com/2022/12/29/technology/good-tech-awards-2022.html

Highlights from Initial Verification

Suggestion	Result		
Standardization of membrane fabrication and cell construction procedures	Both membrane fabrication and stack assembly procedures have been standardized, including things like materials and formulations, membrane clamping, stack inspection, subassembly, build, and pre-operational testing.		
Performing TEA using a framework from published references	TEA work is ongoing with input from NREL's PEM Manufacturing cost report and other published reports.		
More structured project management plan	Dedicated project monitor: Dr. Kathryn Corp, Technical Program Manager.		
Verification of consistent MEA morphology and properties across different spray chambers	The performance of MEAs produced in different spray chambers were found to be very similar, with Faradaic yields within ±1% of the average, and voltages within ±2% of the average.		

Grants Resulting from BETO Project

Grant Name	RAMP 2020: Realizing Accelerated Manufacturing and Production for Clean Energy Technologies	Scaling Up Single Cell MEA
Funding Organization	California Energy Commision	Southern California Gas Company (SoCalGas)
Award Date	March 3, 2021	December 15, 2020
Award Amount	\$3,000,000	\$500,000
Relationship to BETO Project	BETO is cost share for this grant	Cost share for BETO

First signed E-Jet Attribute Offtake Agreement

Shopify's goal: 100% carbon neutral Black Friday/Cyber Monday. This purchase is the first step toward that goal and is Shopify's first carbon transformation purchase.

Highlights:

- \$2.5M customer contract
- Purchase is tied to the carbon impact from our technology

Creates precedent and contractual framework for additional, larger customer offtakes